机器视觉在布匹生产在线检测系统的应用(下)
我们使用德国Stemmer公司的机器视觉软件开发包-CVB中的color、blob工具,它适合于开发颜色模式识别和斑点的检测。
Color检测
一般而言,从彩色CCD相机中获取的图像都是RGB图像。也就是说每一个像素都由红(R)绿(G)篮(B)三个成分组成,来表示RGB色彩空间中的一个点。问题在于这些色差不同于人眼的感觉。即使很小的噪声也会改变颜色空间中的位置。所以无论我们人眼感觉有多么的近似,在颜色空间中也不尽相同。基于上述原因,我们需要将RGB像素转换成为另一种颜色空间CIELAB。目的就是使我们人眼的感觉尽可能的与颜色空间中的色差相近。
Blob检测
根据上面得到的处理图像,根据需求,在纯色背景下检测杂质色斑,并且要计算出色斑的面积,以确定是否在检测范围之内。因此图像处理软件要具有分离目标,检测目标,并且计算出其面积的功能。
Blob分析(Blob Analysis)是对图像中相同像素的连通域进行分析,该连通域称为Blob。经二值化(Binary Thresholding)处理后的图像中色斑可认为是blob。Blob分析工具可以从背景中分离出目标,并可计算出目标的数量、位置、形状、方向和大小,还可以提供相关斑点间的拓扑结构。在处理过程中不是采用单个的像素逐一分析,而是对图形的行进行操作。图像的每一行都用游程长度编码(RLE)来表示相邻的目标范围。这种算法与基于象素的算法相比,大大提高处理速度。
结果处理和控制
应用程序把返回的结果存入数据库或用户指定的位置,并根据结果控制机械部分做相应的运动。
根据识别的结果,存入数据库进行信息管理。以后可以随时对信息进行检索查询,管理者可以获知某段时间内流水线的忙闲,为下一步的工作作出安排;可以获知近期内布匹的质量情况等等。
四、用户界面及操作
项目要求利用机器视觉技术,智能的识别出流水线上布匹的所有杂质以及它们的数量、大小。根据项目要求,我们设计如下:
(1)图像显示区:实时的显示由相机采集的彩色图像,系统根据当前的图像内容实时的识别布匹信息。
(2)信息显示区:把图像的内容——各种杂质的数量实时的显示到表格里。系统当前状态(如:实时检测,停止检测,触发信号状态)实时的显示在状态显示栏中,以便于操作人员了解系统状态。
(3)信息管理区:管理人员可随时查看流水线的统计信息。操作人员可以灵活的配置系统的配置信息(如:数据库的配置,控制模块通讯配置,识别参数的校正)。权限管理控制系统使用者的操作权限,例如:只有高级操作人员才能对系统信息进行配置;只有拥有相应权限的人员才能查看统计信息。
五、布匹颜色学习工具
我们开发了布匹颜色学习工具,此工具界面友好,操作简单。
布匹颜色学习工具
一种颜色应该提供多个模板图像进行训练,这样可以提高识别的能力。学习完毕后要保存成CLF文件,以后模式识别就按照保存特征进行识别。
六.总结
视觉系统涉及到光学和图像处理算法,本身就是高度专业化的产品,尤其在整个识别控制系统中,还要与运动控制系统配合完成后续操作。在本项目的视觉系统中提取识别对象颜色特征值,然后采用模式识别的方法,识别出不合格区域然后使用斑点分析判断是否为杂质。同时提到了整个系统中各个部件的选择和用户界面的设计。
总之,应用机器视觉系统能够大幅降低检验成本,提高产品质量,加快生产速度和效率。对于现代化企业来说,意识到技术发展的趋势并首先付诸实施者无疑将走在竞争的前列。
发布于:2024-12-19,除非注明,否则均为
原创文章,转载请注明出处。
还没有评论,来说两句吧...